首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81547篇
  免费   10132篇
  国内免费   5367篇
电工技术   5175篇
技术理论   2篇
综合类   5523篇
化学工业   17333篇
金属工艺   7671篇
机械仪表   3042篇
建筑科学   4382篇
矿业工程   1560篇
能源动力   3538篇
轻工业   4313篇
水利工程   1710篇
石油天然气   2199篇
武器工业   874篇
无线电   10693篇
一般工业技术   19128篇
冶金工业   4950篇
原子能技术   809篇
自动化技术   4144篇
  2024年   160篇
  2023年   1723篇
  2022年   2093篇
  2021年   2925篇
  2020年   3295篇
  2019年   2951篇
  2018年   2705篇
  2017年   3087篇
  2016年   3152篇
  2015年   3155篇
  2014年   4479篇
  2013年   5038篇
  2012年   5414篇
  2011年   6290篇
  2010年   4522篇
  2009年   4938篇
  2008年   4541篇
  2007年   5318篇
  2006年   4820篇
  2005年   4220篇
  2004年   3447篇
  2003年   3263篇
  2002年   2611篇
  2001年   2145篇
  2000年   1819篇
  1999年   1385篇
  1998年   1280篇
  1997年   1041篇
  1996年   870篇
  1995年   786篇
  1994年   728篇
  1993年   491篇
  1992年   456篇
  1991年   378篇
  1990年   343篇
  1989年   315篇
  1988年   154篇
  1987年   97篇
  1986年   94篇
  1985年   71篇
  1984年   86篇
  1983年   51篇
  1982年   68篇
  1981年   36篇
  1980年   36篇
  1979年   12篇
  1959年   10篇
  1957年   12篇
  1955年   10篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
In this study, the liquid phase plasma (LPP) was irradiated over pure zinc oxide (ZnO), strontium (Sn) doped ZnO, and Sn doped ZnO/CNTs photocatalysts for hydrogen evolution from pure water and from aqueous solution of water-methanol. The possible relationship between hydrogen evolution and optical emissions from LPP for activation of ZnO based photocatalysts was revealed. The role of carbon nanotubes (CNTs) as a support material for improved photocatalytic hydrogen evolution was also investigated in this study. The photocatalytic hydrogen evolution from water mixed methanol under LPP irradiation was compared with pure water splitting. The photolysis produced negligible amount of hydrogen due to minimal photodecomposition of water molecules under LPP irradiation. The plasma born reactive species also played crucial role in photolysis. However, the hydrogen evolution rate increased significantly in the presence of ZnO photocatalyst. Further improvement in hydrogen evolution rate was noticed on Sn doping of ZnO and compositing with CNTs. The highest hydrogen evolution rate of 11.46 mmh−1g−1 from water mixed methanol was achieved with Sn doped ZnO/CNTs photocatalyst. This hydrogen evolution rate from water-methanol solution was 9 times higher than from the splitting of pure water. This hydrogen evolution rate is attributed to excessive production of hydroxyl radicals, red shift in optical band gap of Sn doped ZnO/CNTs photocatalyst, slow electron-hole recombination and fast decomposition of methanol as sacrificial reagent.  相似文献   
92.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
93.
The influence of phase composition and microstructure of Ti42.75Zr27Mn20.25V10 alloy on its hydrogenation kinetic and phase composition of hydrogenated product was studied. It is established that the process of dissociation of hydrogen molecules begins on the surface of Laves phase crystallites. The dissolution of atomic hydrogen in the material volume leads to the formation of cracks in the intermetallic crystallites, which further appear as additional centers of dissociation of hydrogen molecules and noticeably accelerate the diffusion of hydrogen into the bulk material. It was shown that the Laves phase acts as a donor of atomic hydrogen for the BCC solid solution during hydrogenation of two-phase structure, initiating intensive hydrogenation of the BCC phase at room temperature.  相似文献   
94.
The structure and properties of Mn-doped 0.67BiFeO3-0.33BaTiO3 ceramics are systematically investigated with respect to the effects of annealing prior to rapid cooling by quenching in air. Air-quenching induces a change in crystal structure from pseudo-cubic to rhombohedral, with higher quenching temperatures leading to an increased rhombohedral distortion. These structural changes are correlated with the appearance of more well-defined ferroelectric domain configurations. It is shown that the surface preparation procedures for XRD measurements can induce significant changes in the peak profiles, indicating differences in crystal structure between the surface and bulk regions. Frequency dispersion in the temperature-dependent relative permittivity for the as-sintered sample is significantly reduced after quenching, accompanied by enhancement of the Curie point and improved temperature-stability of piezoelectric properties. It is proposed that the formation of defect clusters by A-site cation diffusion during cooling is circumvented by quenching, leading to the observed modification of structural distortion and ferroelectric properties.  相似文献   
95.
《Ceramics International》2022,48(14):20220-20227
A specially designed experimental device was used in laboratory to investigate the corrosion of mullite during the calcination of Li(NixCoyMnz)O2 (LNCM) materials. The anti-corrosion tests were carried out at 1000, 1100, 1200 and 1300 °C, and characterized with X-ray diffraction and scanning electron microscopy. The influence of temperature on the interactions between mullite insulation materials and LNCM materials was determined. In addition, the high-temperature creep properties of the mullite insulation materials before and after corrosion were tested. The laboratory scale tests, thermodynamic and kinetic calculations allowed a more comprehensive understanding of the evolution of the mullite insulation materials during serving for the roasting process of LNCM materials. Through this research, it is suggested that the upgrading of the kiln lining in the lithium battery industry should select materials with excellent resistance to alkali corrosion, especially excellent resistance to Li+ corrosion.  相似文献   
96.
Propylene molecule owns two active sites, the direct epoxidation of propylene by dioxygen is still a challenge due to the limitation of selectivity. In this work, the direct liquid-phase propylene aerobic epoxidation protocol by chloride manganese meso-tetraphenylporphyrin (MnTPPCl) was developed. The conversion of propylene was 12.7%, and the selectivity towards PO (propylene oxide) reached up to 80.5%. The formation of PO was attributed to the mechanism via high-valent Mn species, which was confirmed by means of in situ UV–vis spectrum.  相似文献   
97.
《Ceramics International》2022,48(6):8025-8030
In order to meet the high demand for joining ceramic/superalloy composite structure in extreme environments, a novel high-temperature resistant adhesion technique was developed for joining ZrO2 and Inconel 625 by applying an aluminum phosphate emulsion/zirconium sol based adhesive. With increasing temperature, a series of reactions occurred in adhesive, and its high-temperature bonding was attributed to the formation of a composite structure containing various ceramics and intermetallics. The adhesive after RT curing could find direct applications in extreme environments, and provide bonding strength no less than 2.5 MPa in the temperature range of RT-1100 °C. The bonding strength was higher than 4 MPa in the temperature range of 800–1000 °C, which was further attributed to the formation of an effective CTE-gradient relationship among ZrO2, adhesive and Inconel 625, as well as the interfacial reactions between the two substrates. The work broadened the application of adhesion technique and brought new ideas for joining dissimilar engineering materials.  相似文献   
98.
Core–rim structures were observed as common features in Y-α-SiAlON ceramics hot-pressed between 1550?1950 °C. We found most dopants were taken into α’-rims, and a transition layer grown first on α-cores from liquid-phase over-saturated with metal solutes. Elongated β’-grain were formed as minor phase with α’- or AlN-cores thus only after the α’ matrix had consumed up all Y solutes, revealing that the α’ → β’ transformation is controlled by the transient liquid-phase and similar defects and dangling bonds could be detected in both SiAlON phases by cathodoluminescence. Quantitative assessment of Ym/3Si12?(m+n)Alm+nOnN16?n demonstrates the multiphase evolution, initiated by over-saturation of Y solutes at low temperatures thus retaining α-phase as cores to lower the infra-red transmittance, dictated by homogenization of Al solutes at higher temperature. The elimination of those phase boundaries leads to better dopant and sintering design for achieving transparent and high-performance SiAlON ceramics.  相似文献   
99.
《Ceramics International》2022,48(2):1642-1658
The conditions for the preparation of the solid solutions of a binary system of barium-strontium titanates with the substitutions in the A-sublattice with the rare-earth elements (REE), including the solid-phase synthesis, mechanical activation and sintering of dispersed-crystalline products by the conventional ceramic technology, were optimized. The presence (absence) of the impurity phases was established depending on the size effect of the REE. The precision X-ray diffraction analysis revealed the features of the phase formation in the studied solid solutions and showed that the “behavior” of the structural characteristics of the solid solutions with the participation of the REE is determined by the limiting conditions of the isomorphism and anion excess of the media under study. An assumption is made about the nature of the formation of a fine-grained landscape of the modified solid solutions, associated with the multicluster structure of the crystallite structure and the formation of the ballast phases during their synthesis. The dependences of the dielectric properties of the solid-state solution on the external influences – temperature, frequency of an alternating electric field and strength of a constant field – have been established. The possibility of choosing on the basis of the obtained data, promising for practical applications of the compositions is shown.  相似文献   
100.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号